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The effect of the electron correlation of the two valence electrons has been investigated for atoms with 
(Is)2 (2s)2 (2p)6 (3s)2 (3p)6 (3d)2 ground configuration. The atom is taken as a two-electron system with 
each electron moving in a Hartree-Fock type effective potential. A correlation factor (1+cm) is inserted in 
the wave function of each of the multiplet members obtained from the Hartree-Fock type one-electron 
orbitals, and the values of c are determined by the variation method. The use of the correlated wave function 
has improved, though overcorrected, the multiplet spacings of both Ti in and Cr v. 

I. INTRODUCTION 

IN the theory of multiplet structure of a two-electron 
configuration such as (3d)2, the wave functions of 

various terms are usually taken as the Clebsch-Gordan 
type combination of products of one-electron orbitals.1*2 

The multiplet spacings are found to depend on, in the 
case of (d)2, two Slater-Condon integrals. The usual 
procedure is to treat these integrals as adjustable 
parameters chosen to fit the experimental values of the 
levels. In this manner, reasonable agreement with 
experiment generally can be obtained, and the "empir
ical" values of the Slater-Condon integrals for the 
transition elements in various stage of ionization have 
been given in the literature.3 

The Slater-Condon parameters can be calculated, in 
principle, from the wave function of the 3d electrons. 
It is well known that if the usual Slater orbitals are 
used as the 3d atomic wave function, the calculated 
Slater-Condon parameters are substantially smaller 
than the empirical values.4 Satisfactory agreement with 
experimental values is obtained for the Slater-Condon 
parameters calculated from hydrogen-like wave func
tions only when a certain set of empirical rules of the 
effective nuclear charge is used.5 A more accurate way 
to calculate these parameters is to use the Hartree-Fock 
3d functions and indeed this has been done for many 
transition elements. It was found that the calculated 
multiplet spacings are considerably larger than the 
experimental values.2 The discrepancy here can be 
ascribed to the configuration interaction. Each term in 
(3d)2 interacts with the terms of the same symmetry in 
the upper configurations, and due to the different degree 
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of interaction, the upper members of the (3d)2 multiplet 
will be pushed down more than the lower ones, resulting 
in smaller multiplet spacings. However, a detailed 
calculation of the configuration interaction is very 
difficult, because of the large number of excited con
figurations which must be taken into consideration. 

In this paper, we shall seek to improve the calculation 
of the multiplet structure from the approach of electron 
correlation. A correlation factor of the form (l+cru) 
will be inserted in the wave functions which were 
obtained from linear combinations of products of one-
electron orbitals, and the parameter c is determined 
from the variation method. The accuracy of this method 
depends on the choice of the variational function, and 
the use of a simple form (l-\-cri2) is, of course, not 
expected to lead to results as accurate as those derived 
from a detailed configuration interaction analysis. 
However, with the proper approximation our variational 
approach can be formulated in a rather simple manner 
and does not involve a great deal of numerical computa
tion. The results of this calculation show an improve
ment over the case of the uncorrected Hartree-Fock 
functions. 

II . GENERAL FORMULATION 

In order to simplify the numerical computation, we 
shall introduce the approximation of replacing the atom 
by a two-electron system with each electron moving in 
an effective potential V(r) which includes the effect of 
the inner core. The use of this core model amounts to 
neglecting part of the interplay between the valence 
and the core electrons. The detailed approximate 
nature of the core model will be discussed in the next 
section in connection with the Hartree-Fock procedure. 
The Hamiltonian is now written as (in atomic units) 

H=-iV1
2+V(r1)-iV2

2+V(r2)+(l/r12). (1) 

The zeroth-order approximation consists of taking the 
wave function as a product of the one-electron wave 
functions <j>nim which are the eigenfunctions of the 
operator Hi and H2, i.e., 

Htxf>nim(ri) = l-^i
2+U(ri)2<t>nirn(ri) 

= Enim°(l>nim(ri), (2) 
<frnlm(r$i<Pi) = Rnl(?i) Ylm(B%<pi) . 
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Here U(r) differs from V(r) in that the former has 
included the screening effect of one electron on the 
other. For the case of two equivalent electrons, the 
composite two-electron wave functions are obtained by 
forming linear combinations of the products of <£ accord
ing to the Clebsch-Gordan coefficients 

^Lilf(lj2) = SmiCmi,M-wiI 'Z^nZwi(l)</>nZ,Af-mi(2) 

,M—m\ (02**). (3) 

To take the electron correlation into consideration, 
we shall modify the wave function in Eq. (3) into the 
form 

iV-^L i f (1,2) ( l+c rw) , (4) 

where N is the normalization constant and c is to be 
determined by the variation method and is, of course, 
dependent on L. I t can be readily shown that the 
appended wave functions in (4) are still eigenfunctions 
of L2 and Lz with the same eigenvalues as the original 
functions ^X,M(1,2). One can then multiply the orbital 
functions in (4) by the appropriate spin functions for 
two-electron systems (singlet and triplet) to form the 
composite antisymmetric wave functions which are 
eigenfunctions of L2, Lz, S2, and S2. Since no spin 
interaction terms were included in Eq. (1), the cal
culated energies do not depend explicitly on the spin 
functions and thus the spin part of the wave functions 
will be omitted in the following calculations. The energy 
is 

W= tt{\+cr12)\H\*{l+crl2))/N 
= (^1(1 + ^12)^(1 + ^12)1^) /^ . (5) 

The numerator can be considered as the diagonal 
matrix element of the operator 

B = H+c(rl2H+Hr12)+c2r12Hr12 

with the original uncorrelated wave functions in Eq. (3) 
as the basis. The last term can be simplified in the 
following way. Let us write the total Hamiltonian as 

H=Hl+H2+H', (6) 

where E\ according to Eqs. (1) and (2), is 

H'= (1/r i , )+ V(r 0 - U(n)+V(r2)~ U(r2). (7) 

For two equivalent electrons we have 

<f i2fff i2> = 2<ri2#iri2>+<r12tf V12>. (8) 

From the property of the Laplacian operator it can be 
shown that 

rnHir12 = ri22Hi— 1 — r12 V if 12 • V1. (9) 

Upon expanding the last term as 

fi2Viri2-Vi = |Vifi22*Vi 
= iVi ( r i 2 +f 2

2 -2 r 1 r 2 cos0w)-Vi, (10) 

it is apparent that the cos#i2 term vanishes as one 
integrates over the angular coordinates of the electron 2. 

I t follows that 

(fi2Vifi2-Vi) = ( | V i f i 2 - V i ) = < rx—) 
\ dr/ 

= Rni0)fi—RmO-Wdn 
'0 dri •F 

Jo 

.i r\L 
2 J0 Ldf! 

In a similar way we can show that 

<ri28ff i> = <(rx
2+r2

2- 2nr2 cosBu)H^ = 2{r?H$. (12) 

Substitution of Eqs. (9), (11), and (12) into (8), 
results in 

(r ijffr i2> = Mr1m1)+l+(r12H
,rl2). (13) 

Also, since the eigenfunctions of Hi are used as the 
basis, we have 

(n*Pi> = if<H i2> = Enlm\r 1 2). (14) 

By means of Eqs. (13) and (14), (H) can be rewritten as 

<S> = <ff+2c(2r laffi+r12ff') 
+c 2 (4 r 1

2 ^ 1 +r i2^V 1 2 +l ) ) . (15) 

The normalization constant is 

^ = ( ^ ( l + c f i 2 ) | ^ ( l + c f i 2 ) ) = l+2(;<r18>+2c8<fi*>. (16) 

The energies of each member of the multiplet associated 
with the ground configuration can be obtained by 
minimizing 

W=(H)/N (17) 

with respect to c using the proper zeroth-order function 
according to Eq. (3) for a given L as the basis. 

III. CORRELATED HARTREE-FOCK FUNCTIONS 

So far we have not specified the choice of the potential 
functions V(r) and U(r) as introduced in Eqs. (1) and 
(2). The best way to obtain V(r) is from the Hartree-
Fock self-consistent field (SCF) functions of the inner 
electrons. Watson6 has given extensive tabulation of 
the SCF wave function for the first-row transition 
elements. Our discussion here will be confined to the 
case of (3d)2 although extension to other configurations 
with two equivalent electrons can be easily made. 

Let us denote by inner core electrons those in the 
closed shell (Is)2- • • (3^)6. The equation for the radial 
part of the SCF function of the 3d electrons is2 

f Id/ d\ Z 3 l r 3P 
( r 12—) + — + - E N(nl) Y0(nl,3d; rj 

1 N(nt) 
ZkCk(20;lO)Yk(nl,3d;r1) 

2\/5m=u (2/+l)1/2 

Rmin)-] 1 I 
X \+-i:ka

(k)Yk(3d,3d;r1) \Ru(r{) 

= -tuRu(rd, (18) 
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where N(nl) is the number of electrons in the (nl) 
closed shell, Z is the nuclear charge of the atom, 
ck(lm\lfmf) are integrals involving the normalized 
associated Legendre functions ®zm(0), i.e., 

/ 2 \ 1 / 2 / ' 
(*Qm:l'mr) = ( J ©*.«-«'(0)©i*(0) 

\ 2 JH-1 / Jo 

X@vm>(6)sm0d6, (19) 

and 

Yk(id,n'l':rd- ••rrkj Rni(r2)Rn>. 
Jo 

(r2)r2
k+2dr2 

1 +r1
k+1 Rni(r2)Rnflf(r2)r2-^dr2. (20) 

The terms inside the square bracket in Eq. (18) represent 
the potential of the electric field generated by the inner 
core electrons. Thus, we may identify the effective 
potential V(r) due to interaction of the inner core 
electrons as 

l r 3P 

V(r) = H— Z N(nt)Ye(id,3d;rd 
r ril 

1 sp N(nl) 
E £*c*(20;Z0) 

2^/5 m=u (21+iy* 

XYk(td,3d;rO 
Rmin) 

]• (21) 

The last term in the left-hand side of Eq. (18) is the 
result of the screening of one 3d electron on the other. 
The values of aw vary depending on whether we choose 
to minimize in the SCF procedure a particular multiplet 
level (unrestricted Hartree-Fock functions) or the 
weighted average of all the multiplets of the (3d)2 

configuration (restricted function).6 In the former case, 
we have 

/7 r ( fc )=y , r *, Lllc ,™ ,LU 

ML Z-fWimi ' v-/mi-M— mi ^mi',M— mi' 

Xck(lm1;lm1
f)ck(l,M-mi/;l)M--m1) (22) 

and, for the latter, 
acw = l, a. (2); J4> = -2/63. (23) 

In this paper we shall use only the restricted SCF 
functions,6 because in order to demonstrate the effect 
of the electron correlation on the multiplet spacing, one 
should use the same zeroth-order radial function for all 
five terms of (3d)2. 

Solutions of Eq. (18) have been given by Watson for 
several atomic ions with (3d)2 configuration.6 We shall 

6 R. E. Watson, Solid State and Molecular Theory Group, MIT, 
Cambridge, Massachusetts, Technical Report No. 12, 1959 
(unpublished). 

now identify Eq. (18) with Eq. (2) and therefore 
obtain U(r) as 

U(r)=V(r)+r-^kacWYk(3d,3d;r), (24) 

with V(r) given by Eq. (21). The one-electron functions 
<j> are taken as Watson's analytic SCF orbitals. 

We are now ready to introduce the correlation factor 
( l + a i 2 ) as described in Eq. (4). At this point, the 
approximation which is inherent with the "core" 
picture, must be made. The potential functions V(r) 
and U(r) are determined from the SCF orbitals of 
inner core electrons which in turn depend on the wave 
function of the 3d electrons. Thus, when the correlation 
factor is appended to the wave function of the two 
valence electrons, the SCF orbitals of the inner electron, 
and therefore U(r) and V(r), will change accordingly. 
In this work we shall ignore such a change in the 
functional forms of U(r) and V(r). This is the approxi
mation involved in the core model which was referred 
to at the beginning of Sec. I I . 

Combination of Eqs. (6), (7), and (24) gives 

H=H1+H2+H'; Hf=(l/r12)-V(n)-V(r2), (25) 

V(r%) = rrl Z * aWYk(3d,3d; u). 

In order to reduce Eq. (15) to a more specific form, it 
is noted from Eqs. (25) that 

<fl>=-26+<l/r«>-2<'0(f i )>, 
= - 2 e + £ f c a^F^(3d,3d)-2(^(ri)}, (26) 

where 

F^(3d,3d) 

r<f 

r>' k+l 
Rzd (rI)-RM (fit I WrMndrz. (27) 

Next ri2 will be expanded by the Legendre polynominals 
as 

r « = Z » ft (r<,r>) Pi (cos012) , (28) 

Qh(r<,r>) = 
r<! .fc+2 r<K 

(2k+3)r>
k+1 ( 2 4 - 1 ) ^ * - ! 

, (29) 

where r< and r> are the lesser and greater of n and r2. 
From Eq. (15) we can write 

<S) = - 2 6 + Z * aiWF<«(3d,3d)-2<V(fi)> 

-2c[_2eJ2kaL^M^(3d,3d) 

+ 2 £ J f e a i « K « ( 3 < Z , 3 J ) - l ] 

- c 2 [ 4 e < n 2 ) - i : * aL™M ™(3d,3d) 

+2<rx
2<U (r1))+2(rl')(V (n))-1], (30) 

where 

MW(nl,nl) = f IW</>) I ^ M ^ W |2 

XnWdrrfri, (31) 
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TABLE I. Comparison of the multiplet energies calculated with 
and without correlation for Ti in. 

Level 

*F 
W 
zP 
*G 
*S 

c 

0.0704 
0.1779 
0.1982 
0.2450 
0.5873 

No corr. 

-0.677022 
-0.626789 
-0.616256 
-0.598432 
-0.482976 

With corr. 

-0.681043 
-0.647514 
-0.639331 
-0.631686 
-0.627349 

Energy difT. 
(cm"1) 

882 
4548 
5064 
7298 

31686 

Calculated (cm x) Deviation (%) 
Spacing Obs. (cm-1) No corr. with corr. No corr. with corr. 

1D-»F 8473 11025 7359 +30.1 -13 .1 
sp-3F 10570 13337 9155 +26.2 -13 .4 
*G-*F 14398 17249 10833 +19.8 -24 .8 
iS-*F 14053 (?) 42588 11784 

RM(nl,nQ= / I Qk^r^V^R^RM^ 

XfiWdridr*. (32) 

The expression for the energy which is to be minimized 
is 

W=-2e+{ZkaLWFW(3d,3d)-2(eO(ri)) 

-2c[2 E* aL™RW(3d,3<I)-i] 

-c2l-^aL^M^(3d,3d)+2(r1
2V(rl)) 

+2<na><V(fi)>-l]} 

X[ l+2c £ * aL^M^(3d,3d)+2c2(r1
2)']-K (33) 

Tables I and II show the results of the correlation 
coefficients and the multiplet spacings of the correlated 
wave functions as compared with experimental data7 for 
Ti in and Cr v. 

The simple correlation factor has improved consider-

TABLE II. Comparison of the multiplet energies calculated with 
and without correlation for Cr v. 

Calculated energy (a.u.) 

Level 

3/? 

W 
3 p 
*G 
lS 

c 

0.0725 
0.1797 
0.1951 
0.2416 
0.5544 

No corr. 

-0.934298 
-0.861935 
-0.847776 
-0.821558 
-0.655069 

With corr. 

-0.938856 
-0.885135 
-0.873253 
-0.858753 
-0.783719 

Energy diff. 
(cm"1) 

1000 
5092 
5592 
8163 

28235 

Calculated (cm x) Deviation (%) 
Spacing Obs. (cm-1) No corr. with corr. No corr. with corr. 
W-*F 13200 15882 11790 +20.3 -10.7 
*P-*F 15500 18989 14398 +22.5 - 7.1 
*G-*F [22060]a 24744 17581 +12.2 -20 .3 
lS-sp . . . 61284 34049 

a Obtained by extrapolation (see Ref. 7). 

ably, though overcorrected, the calculated spacings of 
XD—*F and 3 P - 3 F in both Ti m and Cr v. The devia
tion of the 1G-ZF, however, is larger with the correlated 
functions than with the uncorrelated ones. The experi
mental term value of the (3d)2 lG state for Cr v was 
obtained by extrapolation7 and the uncertainty involved 
in this procedure could be responsible for this anomaly. 
In the case of Ti in, no immediate explanation can be 
given for the large deviation of the lG state. 

The correlation coefficients and thus the energy 
suppression due to the correlation effect for the five 
members of (3d)2 increase in the same order as the 
energy. Also, the correlation coefficients for Ti in and 
Cr v are nearly equal to each other. It is interesting to 
note that in the calculation of the correlation energy 
using (l+cri2) for the (Is)2 configuration of the 
isoelectronic sequence He, Li+, Be2+, • • •, 06+, the values 
of c obtained by the variational method are of nearly 
the same magnitude for the entire series.8 Also, it was 
found that in the He sequence the simple (1+cru) 
correlation factor accounts for about half (or less) of the 
difference between the energies calculated from the 
product-type functions and the experimental energies.8 

Of course, for the helium-like atoms, one is dealing 
with the total energies rather than the energy spacings 
within a multiplet. However, these results do give some 
rough indications as to the degree of improvement on 
the multiplet spacings that can be reasonably expected 
from the (1+cru) appendage. 

The two main approximations employed in this 
calculation are the choice of a simple correlation factor 
(l+cru) and the core model, and are presumably 
responsible for the major part of the discrepancy from 
the experimental term values. To improve the calcula
tion, a two-parameter correlation form such as [l+cri2 
+6/(fi—^)2] may be used. Also, one can abandon the 
core approximation and repeat the SCF calculation 
using the correlated wave function for the two valence 
electrons to determine the improved wave functions of 
the inner core. This would result in a change of the 
effective potential V(r). Examination of Eq. (30) shows 
that the multiplet spacings depend mainly on the radial 
part of the SCF function of the (3d) electron, but do not 
contain V(r) explicitly. Although Ru(r) is affected by 
V(r), one may expect that the change in multiplet 
spacings produced by such a variation of V(r) will 
not be a serious one. Finally, there is the question of the 
importance of the correlation terms between the valence 
electrons and the core electrons which have not been 
considered in this work. The inner-outer correlation 
is expected to have more influence on the absolute 
shifts of the energy of the entire (3d)2 group than on 
the spacings between the components. In the absence 
of detailed calculations of the inner-outer correlation, 
no estimate can be given for the change of the multiplet 

7 C. E. Moore, Nat. Bur. Std. (U.S.), Circ. No. 467. 
8 G. R. Ellison, Masters thesis, University of Oklahoma, 1963 

(unpublished). 



A336 R . W . M I R E S A N D C . C . L I N 

structure due to this effect. Nevertheless, our calcula
tions do give considerable improvement over those of 
the Hartree-Fock functions and show that the energy-
corrections calculated from a simple correlation factor 
are of the right magnitude to account for the difference 
between the experimental multiplet spacings with that 
predicted by the Hartree-Fock theory. 

I. INTRODUCTION 

THE purpose of this paper is to present the results 
of some investigations concerning the steady 

diamagnetic susceptibility of "small" systems of elec
trons. A "small" system is denned as one whose charac
teristic linear dimensions (L) are very much less than 
the average radii (Rc) of the classical electronic orbits1 

in an applied dc magnetic field. In treating this problem, 
it is customary to idealize2 the real physical situation to 
that of a free-electron gas confined to a box. The surface 
of the box is then represented by a simple, and ana
lytically tractable, potential barrier. The use of such a 
model seems justifiable in view of the fact that the very 
existence and order of magnitude of size corrections for 
small systems have not been definitely established. 
These are, indeed, the subjects of the present paper. 

* This work was supported in part by the U. S. Air Force Office 
of Scientific Research, Grant No. AF 196-63. 

f Present address: RCA Laboratories, Princeton, New Jersey. 
The author would like to thank RCA Laboratories for the oppor
tunity of completing this work. 

1 Specifically, if Rc is taken as the classical orbit radius corre
sponding to the mean-electron energy, (E)=£ or kT, according to 
whether the electron gas is taken to be degenerate or nondegener-
ate, respectively, then L^iRc=(mc/eH)(2(E)/m)lf2. As will be 
seen later, this is simultaneously the domain of validity for treating 
the magnetic-field proportional terms in the electronic Hamil-
tonian as a small perturbation. 

2 In so doing, one neglects the periodic potential, collision of the 
electrons with phonons and impurities, and the true scattering 
properties of the surface. Also, electron spin is neglected 
throughout. 
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The treatments to which the present work has refer
ence, are those of Dingle,3 Part IV, and Ham.4 Dingle 
considers a cylindrical sample, for which he predicts an 
enhancement of the Landau diamagnetic susceptibility 
depending on the ratio of the radius of the cylinder to 
the electron wavelength at the Fermi energy. Ham does 
not specifically treat a "small" system. Rather, using a 
modification of the WKB approximation, he calculates 
surface corrections to "large" (LS>RC) systems, the sign 
and magnitude of which he finds extremely sensitive to 
the form of the surface potential. 

The present paper began with an investigation of such 
effects by means of a detailed examination of a very 
simple geometrical model: namely, a plane-parallel 
slab, small (in the previously defined sense) in one 
dimension (at the boundaries of which the wave func
tion is assumed to vanish), and satisfying periodic 
boundary conditions along the other two transverse 
dimensions. Such a geometry had been considered earlier 
by Papapetrou5 who obtained just the Landau result6 

for a degenerate electron gas. In addition to confirming 
his calculation by an alternate procedure and obtaining 

3R. B. Dingle, Proc. Roy. Soc. (London) A212, 47 (1952). 
4 F . S. Ham, Phys. Rev. 92, 1113 (1953). 
6 A. Papapetrou, Z. Physik 107,387 (1937). It should be pointed 

out that the present paper overlaps this reference to some extent. 
The addition contributions of the present work, however, are: (a) 
the calculation of the Landau susceptibility for Boltzmann statis
tics (not considered by Papapetrou); (b) the explicit demonstra-
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The order of magnitude of the (orbital) diamagnetic susceptibility of a free-electron gas is investigated for 
the case of "small" systems. A small system is, by definition, one whose characteristic linear dimensions are 
very much less than the radii of the average classical electronic orbits in an applied dc magnetic field. For 
the case of plane-slab geometry, exactly the Landau susceptibility (i.e., no size effect) is obtained for 
Maxwell-Boltzmann statistics. Furthermore, on the basis of the latter calculation, it is explicitly demon
strated that the use of the WKB approximation leads to a spurious size effect, suggesting that this (or 
equivalent) approximations may be responsible for size corrections found by other authors. For the de
generate case, the Landau result is also obtained, to within a numerical factor. Finally, no size correction is 
obtained in the small size limit for an electron gas confined by a harmonic potential well; this further sug
gests that the Landau result is independent of the choice of boundary potential. 


